

LUCID-LENS

CONTENT

PROBLEM

01

Challenges in Object Identification:

Visually impaired individuals face challenges in identifying objects and understanding their surroundings due to the lack of visual cues.

02

Limitations of Traditional Methods:

Traditional methods of object identification through touch or assistance from others are often time-consuming and not always feasible.

03

The Need for Swift:

There's a need for a solution that can swiftly and accurately identify objects and provide auditory feedback to visually impaired individuals.

WHY THIS????

Empowering Independence

This project aims to enhance independence and autonomy for visually impaired individuals by providing real-time auditory descriptions of their environment.

Fostering Inclusivity

By converting visual information into speech, we can bridge the gap between the sighted and visually impaired communities, fostering inclusivity and accessibility.

Enhancing Quality of Life

The implementation of this project can significantly improve the quality of life for visually impaired individuals, empowering them to navigate their surroundings with confidence and ease.

POTENTIAL APPLICATION AND IMPACT & LucidLens

For visually impaired

The model will describe the surroundings and convert it to speech. This will give them a sense of independence and dignity.

N

Guide for Visitors

We will collect the dataset of our university and then this model can be used to guide the visitors in the campus. This can give them information about specific locations and objects in the campus.

Automatic alternate Text Generation

Generate alt text for images on websites, improving SEO and accessibility. Alt text provides a brief description of an image for those who cannot see it.

LITERATURE SURVEY

Title: - Indoor object detection and recognition for an ICT mobility assistance of visually impaired people

Method: - YOLO v3, DarkNet-53, Flickr8k, 16 indoor classes

Cons: -73.19% accuracy, and it is only focused on indoor navigation. Used pretrained model and trained on the new dataset

Reference: - Afif, M., Ayachi, R., Said, Y., Pissaloux, E., Atri, M., 2020b. An evaluation of retinanet on indoor object detection for blind and visually impaired persons assistance navigation. Neural Processing Letters, 1–15.

LITERATURE SURVEY

Title: - Object detection and Narrator for Visually Impaired people

Method: - Used YOLO, trained on Imagenet dataset

Cons: Accuracy is 62.5% for normal phones and 75% for iphones and Samsung. The results are camera dependent.

Reference: - Nasreen, J., Arif, W., Shaikh, A.A., Muhammad, Y., Abdullah, M., 2019. Object detection and narrator for visually impaired people, in: 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), IEEE. pp. 1–4.

LITERATURE SURVEY

Title: - Building A Voice Based Image Caption Generator with Deep Learning

Method: - NLP , CNN, LSTM (Long short term memory), RNN (recurrent neural network) flicker8k dataset

Cons: Accuracy is 90% but the dataset is small. Big datasets could be used. According to current trends, it's not sufficient. We are working to overcome these shortcoming with our

model.

Reference: -Anu, M., Divya, S., et al., 2021. Building a voice based image caption generator with deep learning, in: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE. pp. 943–948

Flickr 8k 8091 images

1) A brown dog chases something a man behind him threw on the beach.

2) A man and a dog on the beach.

3) A man is interacting with a dog that is running in the opposite direction.

4) A man playing fetch with his dog on a beach.

5) A man walking behind a running dog on the beach.

Flickr 30k 31,783 images

of a white canvas with a rainbow on it.

rainbow with her hands in a bowl.

1) A small girl in the grass plays with fingerpaints in front 2) A little girl covered in paint sits in front of a painted 3) There is a girl with pigtails sitting in front of a rainbow painting.

A little girl is sitting in front of a large painted rainbow.

5) Young girl with pigtails painting outside in the grass.

MS COCO 164K images

1) A man holding a racquet on top of a tennis court.

2) A man who is diving to hit a tennis ball.

A man swings a tennis racket at a ball.

4) A guy in a red shirt and white shorts playing tennis.

5) A tennis player hits a tennis ball during a match.

1) A man does skateboard tricks off a ramp while others watch.

A skateboarder does a trick for an audience.

3) Boy dressed in black is doing a skateboarding jump with a crowd watching.

4) Two dogs on pavement moving toward each other.

5) People watching a guy in a black and green baseball cap skateboarding.

(a) Flickr8k

1) A black dog and a white dog with brown spots are staring at each other in the street.

2) A black dog and a tri-colored dog playing with each other on the road.

3) Two dogs of different breeds looking at each other on the road.

Two dogs on pavement moving toward each other.

5) A black dog and a spotted dog are fighting.

(b) Flickr30k

- 1) A giraffe is fenced in next to a large city.
- 2) A picture of a giraffe fenced in captivity.
- 3) A giraffe standing near a pole in an enclosure.

4) A giraffe standing next to a tall tree in front of a major city.

5) A giraffe sitting behind a fenced in area.

(c) COCO

Datasets	Vocab Size	Max Length	Total Words	Top-10 Wo
MS COCO Flickr8K	9486 2629	49 37	6,421,733 422,800	a, on, of,
Flickr30K	7648	78	1,892,755	a, in, the, on

Why Flickr 30k

- A standard Benchmark for sentence based description of images
- Good long Captions
- Descent Vocab Size
- Large and Diverse
- Freely available and widely researched

Data Collection

- Images are collected from flickr platform
- Annoatated by humans
- Included Criteria such as human and animals
- In accordance with Flickr's terms of service and by anonymizing any personal information that could be identified in the captions.

ords with Higher Occurrences

the, in, with, and, is, man, to on, is, and, dog, with, man, of η, and, man, is, of, with, woman

Visualization of VGG16 CNN Layers

Layer block1_pool Activations

Filter 0 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6 Filter 11 Filter 9 Filter 17 Filter 18 Filter 19 Filter 22 or Filter 26 Filter 53 Filter 54 Filter 57 ter 61

Layer input_layer Activations

Layer block2_pool Activations

Filter 0 Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6 Filter 7 Filter 8 Filter 9 Filter 10 Filter 11

Filter 23

Filter 5

Filter 63

	Filter 12	Alter 13	Filter 14	Filter 15	Filter 16	Aller 17	Filter 18	Aller 29	Silter 20	Filter-21	Filter 22	Filter 23
	Pilter 4	Filter 25	Filter 26	Filter 27	Filter-28	Filter 29	Filter 30	Filter 31	Filter 32	Filter 33	Filter 34	Filter 35
	Piter 36		Filter 38	Filter 39	Filter 40	Filter 41	Filter 42	Filter 43	Filter 44	Filter 45	Filter 46	Filter-47
	Filter	Filter 49	Filter 50	Her 51	Filter 52	Filter 53	Filter 64	Filter 55	Pitter 56	Filter 57	Filter 58	Filter 59
	Filter 60	Filter 61	Filter 62	The 163	Filter 64	Filter 65	Filter 66	Filter 67	Filter 68	Filter 69	Filter 70	Filter 71
	Filter 72		Filter 74	Filter 75	Filter 76	Filter 77	Filter 78	Filter 79	Filter 80	Filter-81	Filter 82	
	Filter 84	Piller es	Filter 86	Filter 87	Filter 88	Filter 89	Filter 90	Filter 91	Filter-92	Filter 93	Filter 94	Filter 95
	Filter 96	Filter 97	Filter 98	Hteros	Filter 100	Filter 101	Filter 102	Filter 103	Filter 104	Filter 105	Filer 106	Filter 107
	Alter 108	Filter 109	Filter 110	Filter 111	Filter 112	Anter (13	Filter 114	Filter 115	Filter 116	Ricera 19	Citer 18	Filter 119
	Filter 120	Filter 12	i IFuter 12:	Filter 123	Filter 124	Filter 125	Filter 126	Filter 127	Set.	R.	A.	All and a second
	2th	Je.	A State	det:	A.	2	St.	s and a	0.5 -	0.5 -	0.5 -	
5 -	0.5 -	0.5	- 0.5	0.5	0.5	0.5 -	0.5	0.5	0.5 -	0.5 -	0.5 -	
) -	0.0	0.0	D 0.0	D.0-	D.0	0.0 D	0.0 D	D.0.	0.0 D 1	0.0 D 1	0.0	D :

Layer block3_pool Activations

iter 1	ilter 1	uter 11	liter 19	ilter 2	Niter 21	Sir.	niter 21	-Fig sitter 2	ilter 21	aliter 7	Silter 21	niter 2	Silter 2		E.S.
ilter 31	alter 3	inter/se	liter 36	ilter 36	iilter 31	(ilter 30	and a	al ter 4	liter 4	history	Eilter 41	E.	lilter 4	iter 4	alter 47
ilter 48	liter 4		Alter SI	iter St	liter Si	iller 54	inter 51	aller S	ilter 51	Alter 5	Bilter St	Jilter 6	aller o	niter 6	fiter 69
A. Nerst	liter 61	ilter 6E	ilter 67	Norice	14	ilter 7	fter tr	Eiter 7		liter 7	- Filter VI	ilter 7	ilter 7	1 de la	ilter 79
ilter 86	liter 8	alter be	Nter 88	alter 84	ilter 8		ilter 8	7ilter 88	liter 8	E.	Milter 9	hiter 91	2 liter 9	Bilter 9	liter 95
iter 9	iiter 9	A.B.	liter 99	lter 10		lter 10	ater 10	Rei di	ater 10		oter 16	iter 19	a da a	2. A.	0ter 11
ter 18	ler 18	iter 1E	tereti	12	ier 18		Biter 1	Ster 12	and the	llter 18		iker 12	Ater 11	A le	8ter 12
	Ren 12		24	E_{i}	14	Beri B	Arter 18	Bter 1B	a Bert1B	🤌 Itter 18	Rer 18	Pres 14	đ.	Iter 14	ater 14
ter 14	ator (R	Ser 14	eter 1#	60 M	ater 1#	Ver 15	Dter 15	iter 16	St	tor pr	C.S.		Ster 15	ijter 15	J. 15
ker be	oter 16	and to	ker 16	xer 15	4ter 16	Jes Ster-16	eter 16	iner 16	er 16	at or 19	Mer d V	nter 14	iter 17	d_{i}	
ter 17	Ster 17	Iter 19	Paris Ster 18	90er 18	0.0018	iter 16	di la		aten 18		őler 18	iter 18	Bter 18	eter 19	a de la
ter 19	2ter 19	Ker 19	4ter 19	ster 19	ater (19	Tter 19		Rter 20	oter 20	nter 20	uter 28	12.	Ater 26	Ster 20	eter 20
ter 20	ale de	eter 2 E	trer 2€i	lter 28	Ren 21	a de la		F Eter 2E		in Ja	iter 2 E	Ster 29	a	ter 28	
ter 21	Ater 22		8.	ner 2 P		Star-28	in the	2.40	Wer 28	Bter 28	Ater 28	Bter 28	Bter 28	÷.	52 Rer 23
ter 2 fi	S.	iter 2#	Rer-24] ter 2期	ter 2#	Ster 2#	Ser 28	1 1 2 - 1	100	ster 25	ter25	n of 25	P Rter 25	R.	24
ĝ.	Â.	St.	- St.	84			S.	1	1.	and the second	12	20	NO.		Sec.

Filter 0Filter 1Filter 2Filter 3Filter 4Filter 5Filter 6Filter 7Filter 8Filter 9Filter 1Gilter 1Eilter 1Eilter 1Bilter 1Afilter 15

Layer block4_pool Activations

Layer block5_pool Activations

Visualization

Preprocessing

- Mapping Between Captions and image_name
- convert Uppercase to lowercase
- Remove Special characters and full stops
- Tokenization

['Two young guys with shaggy hair look at their hands while hanging out in the yard .', 'Two young White males are outside near many bushes .', 'Two men in green shirts are standing in a yard .', 'A man in a blue shirt standing in a garden .', 'Two friends enjoy time spent together .']

['startseq two young guys with shaggy hair look at their hands while hanging out in the yard endseg', 'startseq two young white males are outside near many bushes endseq', 'startseq two men in green shirts are standing in yard endseq', 'startseq man in blue shirt standing in garden endseq', 'startseq two friends enjoy time spent together endseq']

ML METHODOLOGY:

CAPTION PREDICTION

Predicted Caption

WHAT IS BLEU SCORE?

BLEU SCORE

4 – gram precision =
$$rac{Clip(Num \ 4 - g}{Num \ 4 - gram}$$

ram matches)

in generation

COMPARISON WITH OTHERS

Others on Flickr30k

Methods	BLEU-1	BLEU-2	BLEU-3	BLEU-4
VggNet+RNN	0.591	0.382	0.254	0.173
Log Bilinear[28]	0.601	0.381	0.257	0.174
GoogLeNet+RNN	0.585	0.396	0.263	0.171
Hard-Attention [54]	0.674	0.445	0.307	0.206
semantic attention [58]	0.647	0.460	0.324	0.230
Joint model with ImageNet [46]	0.69	0.50	0.35	0.22
Attributes-CNN+LSTM [53]	0.73	0.55	0.40	0.28
RIC with STL	0.681	0.489	0.338	0.223
RIC with STL and DAF	0.684	0.513	0.352	0.233
RIC with variational autoencoder	0.745	0.528	0.375	0.244
Human[6]	-	-	-	-

From Literature Review

Building A Voice Based Image Caption Generator with Deep Learning : Accuracy 90 % Object detection and Narrator for Visually Impaired people: Accuracy 62-75 % Indoor object detection and recognition for an ICT mobility : Accuracy 75 %

Reference:- Xie, Tian, Weiping Ding, Jinbao Zhang, Xusen Wan, and Jiehua Wang. 2023. "Bi-LS-AttM: A Bidirectional LSTM and Attention Mechanism Model for Improving Image Captioning" Applied Sciences 13, no. 13: 7916. https://doi.org/10.3390/app13137916

Ours

BLEU-1: 0.461451 BLEU-2: 0.260143

BLEU-3: 0.137815 BLEU-4: 0.073694

DEPLOYING AT PLAKSHA

Campus Tour Guide

Transfer Learning

- Obtain the dataset
- Preprocess the data
- Load Pre-trained model
- Fine-tune the model
- Train the model

Challenges

• Obtaining the dataset Low accuracy

CHALLENGES FACED:

- 1. Data Quality and Diversity: Ensuring the dataset covers a wide range of scenes, objects, and activities to generate diverse and meaningful captions.
- 2. **Hyperparameter Tuning:** Experimentation with learning rates, batch sizes, and model architectures to find the optimal configuration.
- 3. **Real-time Performance:** Ensuring the caption generation process is fast enough to provide real-time feedback for blind users.

REFERENCES

- 1) Guan, Zhibin & Liu, Kang & Yan, Ma & Qian, Xu & Ji, Tongkai. (2018). Sequential Dual Attention: Coarse-to-Fine-Grained Hierarchical Generation for Image Captioning. Symmetry. 10. 626. 10.3390/sym10110626.
- Yohannes, E., Lin, P., Lin, C.Y., Shih, T.K., 2020. Robot eye: Automatic object detection and recognition using deep attention network to assist 2) blind people, in: 2020 International Conference on Pervasive Artificial Intelligence (ICPAI), IEEE. pp. 152–157
- Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF conference on 3) computer vision and pattern recognition, pp. 10781–10790
- Pardasani, A., Indi, P.N., Banerjee, S., Kamal, A., Garg, V., 2019. Smart assistive navigation devices for visually impaired people, in: 2019 4) IEEE 4th International Conference on Computer and Communication Systems (ICCCS), IEEE. pp. 725–729.
- Mahendru, M., Dubey, S.K., 2021. Real time object detection with audio feedback using yolo vs. yolo v3, in: 2021 11th International Conference on Cloud 5) Computing, Data Science & Engineering (Confluence), IEEE. pp. 734–740.
- 6) Rajwani, R., Purswani, D., Kalinani, P., Ramchandani, D., Dokare, I., 2018. Proposed system on object detection for visually impaired people. International Journal of Information Technology (IJIT) 4, 1–6.
- Nasreen, J., Arif, W., Shaikh, A.A., Muhammad, Y., Abdullah, M., 2019. Object detection and narrator for visually impaired people, in: 2019 7) IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), IEEE. pp. 1–4
- 8) Xie, Tian, Weiping Ding, Jinbao Zhang, Xusen Wan, and Jiehua Wang. 2023. "Bi-LS-AttM: A Bidirectional LSTM and Attention Mechanism Model for Improving Image Captioning" Applied Sciences 13, no. 13: 7916. https://doi.org/10.3390/app13137916

Govind (U20220037)

Prashant Mishra (U20220067)

Rahul Kumar (U20220071)

THANK YOUR ATTENTION

May 2024

